Double-decker Noise Modeling

Capturing the reflection for the Alaskan Way Viaduct

Lawrence Spurgeon, Parsons Brinckerhoff

Presented By:

Lawrence Spurgeon Parsons Brinkerhoff 999 Third Ave, Suite 2200 Seattle, WA 98104-4020

Tel: 206/382-5285

E-mail: spurgeon@pbworld.com

Alaskan Way Viaduct

Study Vicinity - Seattle, WA

Noise Measurements with Viaduct Open and Closed

Noise Measurement Differences

- The average measured difference between closed and open was 12 dBA.
- The range of differences was from 6 to 19 dBA.

TNM Two-layer Roadway Modeling

- Create two roadways on-structure
- Identical horizontal coordinates
- Elevation of top deck
 22 feet higher than
 bottom deck.

Comparison Locations

Modeled Compared to Measured

Model Under Predicts Reality

- TNM 2.1 under predicted noise levels by 7 dBA on average.
- TNM neglected noise generated by traffic traveling on the lower deck and reflecting off of the upper deck.
- The reflection is audible and substantially contributes to overall noise within 1 to 2 blocks from the viaduct.

Prior Work on Noise Reflections

- Assessing Noise Reflections Off of the Underside of Elevated Bridge Structures: Procedures using the FHWA Traffic Noise Model, Reiter & Bowlby, Transportation Research Record 1792, 2002.
- Multi-Level Roadway Noise Abatement, WSDOT 1992.

TNM Virtual Roadway Modeling

- Two "virtual" roadways were added
- Sized 1-foot wide
- Placed at bottom of upper deck
- Traffic for each virtual roadway was 50% of traffic on lower deck

Modeling Results with Reflection

Modeling Results

Virtual Roadway Simulates Reflection

- Initially, TNM 2.1 under predicted noise levels by 7 dBA on average.
- With the virtual roadway added, TNM 2.1 under predicted noise levels by 2 dBA on average.
- The method is not reliable in areas transitioning to and from a double-deck configuration.

Noise Levels at one Cross-section

Modeling Results (Cross-section)

Modeled Reflection Observations

- At the edge of structure, virtual roadway reflection increases traffic noise level by 10 dBA, because direct roadway noise is shielded by the edge of the roadway deck.
- One-hundred feet from structure, the contribution of the reflection decreases to 2 dBA.
- The method is not reliable in areas transitioning to and from a double-deck configuration.

Acknowledgements

- Jim Laughlin, **WSDOT**
- Ginette Lalonde, **Parsons Brinckerhoff**
- John Maas, WSDOT
 Steven Wolf, Parsons Brinckerhoff